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The journey of Factor VIII in plasma—from donor 
to concentrates

Factor VIII in donors

The role of ABO blood groups
The effect of ABO blood groups on FVIII levels has been 
well described (1) and has been suggested to involve the 
secretor locus (2). The possibility of selecting plasma 
donors with high blood group A-associated FVIII levels was 
also raised in the 1980s (3,4). The practical difficulties in 
restricting plasma donors intended for FVIII manufacture 
to group A donors disallowed this approach. Concurrently, 
the occasional hemolytic adverse effect of contaminating 
isoagglutinins in early FVIII concentrates (5) led to at least 
one manufacturer KABI Vitrum in Sweden, now part of 
Octapharma) supplying blood group specific plasma derived 
FVIII (pd-FVIII) manufactured solely from group A or 
group O donors). Experiments in Chris Prowse’s laboratory 
in the early 1980s indicated that both FVIII:C and VWF, as 
measured through their respective antigens, were associated 
with group A substance (Figure 1). 

The stimulation of donors to increase plasma FVIII 
levels
Mannucci’s seminal work on the use of 1-Deamino-8-d-
arginine vasopressin (DDAVP) for treating mild haemophilia 
A and von Willebrand disease (VWD) through the release 
of endogenous stores (6) led to the application of this 
agent to increase FVIII and von Willebrand factor (VWF) 
levels in normal individuals (7) (Figure 2). By increasing 
the FVIII level in blood donors, this approach could 
increase FVIII yields in cryoprecipitate using a variety of 
protocols for treating haemophilia A (8-10) and VWD (11).  
Issues around the ethics of administering DDAVP led to 
the discontinuation of this promising development. It is 
unlikely that the stimulation of donors with DDAVP has 
had any significant adverse effects and the use of agents 
to elicit hyperimmune antibodies and hematopoietic stem 
cells (12,13).
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the early observations that the biological activity in plasma 
under blood bank conditions was extremely labile (14). 
Since the storage conditions of banked blood demanded 
refrigeration to preserve red cells and minimize bacterial 
growth, most early workers studied the stability of FVIII 
in banked blood at 4 ℃, in order to assist the harvesting 
of FVIII from blood donations. This established the “bi-
phasic” decay of FVIII, with a “golden window” within the 
first 6 hours after collection, when FVIII levels fall faster 
than during the subsequent period. We confirmed this in 
the early 1980s, but we also observed that refrigeration 
of whole blood resulted in losses of FVIII through 
cryoprecipitation, which were then lost into the red cell 
fraction when plasma was separated. These losses could be 

recovered through warming the blood prior to recovery of 
the plasma (Figure 3) (15).

These observations demonstrate the tension which 
has always existed when the raw material for pd-FVIII 
manufacture is plasma recovered from whole blood 
donations. The competing needs for red cell and FVIII 
preservation have continued to “favour” red cells, as is to 
be expected in the mainstream transfusion context. It does 
accentuate the advantages which are accruable if plasma 
destined for pd-FVIII manufacture is harvested through 
plasmapheresis. Another aspect studied intensely has been 
the role of preservative, or anticoagulant, for the initial 
collection. This merits a section to itself.

Factor VIII and “M2+”

Weiss’ work from over fifty years ago demonstrated that 
the stability of FVIII was dependable on divalent metal 
ions, and that increasing levels of chelating anticoagulant 
affected the FVIII in plasma substantially (16). For many 
years it was thought that this was due to calcium ions, but 
recent developments involving our current knowledge of 
the molecular structure of FVIII (Figure 4) suggests that 
the divalent metal ion mediating the association between 
the two chains of FVII may also include copper (17). Our 
own studies suggested that adding Ca2+ with heparin cover 
to prevent clotting allowed the recovery of FVIII activity in 
stored blood after 3 hours but not after 18 hours, when the 
lost activity was irrecoverable (Figure 5). 

Studies by Rock et al. (18) attempted to exploit this 
dependence through collection of blood in heparin, in order 

Figure 1 Absorption of FVIII and VWF from group specific 
concentrates on immobilized antibodies. Upper panel, FVIII Ag; 
lower panel, VWF Ag (Farrugia, 1984).

Figure 2 Changes in FVIII following 0.3 µg/kg in normal men 
(From Prowse et al., 1984).

200

160

120

80

40

15 30 45 60 75 90–15 0

Minutes

VIII:C (IU/dL)

Figure 3 FVIII levels in blood collected and stored at 4 ℃. 10 mL 
samples were centrifuged at the time points shown and assayed for 
FVIII. Further details in Farrugia 1984.
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to retain physiological M2+ levels, but this would affect the 
capacity to harvest additional proteins. Weiss’ work (16)  
suggested that the citrate concentrations achieved in 
standard anticoagulants were in excess of what was needed 
to prevent gross coagulation. We therefore approached this 
issue by a number of alternative ways [Farrugia, 1984 (15)],  
finally settling on the collection of blood into citrate 
anticoagulants with half the standard citrate concentration—
half-strength citrate [½ citrate-phosphate-dextrose (CPD)]. 
This stabilized FVIII in plasma significantly (Table 1) (19). 

But…does it matter really?

Preserving FVIII in plasma to ensure high levels in frozen 
raw material would be anticipated to result in final FVIII 
yields which are commensurately improved. Similarly, the 
modifications in formulation of plasma and intermediate 
fractions to preserve Ca2+ levels which are compatible with 
FVIII would have little practical use if they were not able to 

achieve higher yields in FVIII purification to products. As 
an example, the logistical efforts (and expense) involved in 
ensuring rapid separation and freezing of recovered plasma 
within the “golden window” to ensure that the FVIII levels 
are high would be of little use if the higher plasma FVIII 
are not recovered downstream, compared to plasma frozen 
outside the “golden window”. Yes, there is little evidence 
to suggest that this may be the case; plasma frozen within 
the “golden window” does yield higher FVIII levels in the 
cryoprecipitate, but this is not always reflected into final 
concentrate (20-22) (Table 2). 

One well known authority has addressed this issue 
with some well-justified skepticism (23), describing 
manufacturing problems encountered with the use of ½ 
CPD. Experience with blood bank cryoprecipitate (Table 3) 
(19) and small-scale models (Figure 6) (24) indicates yield 
improvements which are reflected downstream of the initial 
plasma. In large scale manufacture, formulating in-process 
intermediates to higher Ca2+ levels resulted in improved 

Figure 4 FVIII structure, function, and processing. The sites of FVIII interaction with other clotting factors, vWF, phospholipids (PL), and 
metal ions (M2+) are illustrated by dotted circles (from Wang, 2003).
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FVIII stability (25), but limited data using ½ CPD did 
not confirm higher yields further downstream (26). It is 
probable that the two factors assessed in this section—
rapid freezing of uncooled plasma and low citrate levels in 
machine-delivered anticoagulants (27-29)—are converging 
to result in the higher FVIII yields which current era 
fractionators know (but seldom publish) are derived with 
plasmapheresis, as compared to recovered, plasma.

From plasma to cryoprecipitate

What makes cryoprecipitate?

The production of cryoprecipitate has produced a 
voluminous, literature, although not well maintained. An 
area of interest in attempting to optimize cryoprecipitate 
production is to understand the actual mechanism of 

this phenomenon. A hypothesis based on conventional 
eutectics led Polson (30) to propose that a simple “salting 
out” of proteins through the increasing salt concentrations 
generated by the freezing of plasma was involved. 
Mackenzie’s work (31) cited by McIntosh et al. (32), based 
on electric resistivity measurements in plasma and other 
colloid solutions, indicated that there was no simple eutectic 
transition, and was confirmed by McIntosh’s measurements 
showing no evidence of any eutectic freezing (Figure 7) (32).  
Our own work increasing the protein concentration of 
plasma through the addition of albumin suggested that 
a similar concentration effect of the hydrophilic protein 
albumin might contribute to a differential precipitation of 
the least soluble plasma proteins in the cold (33) (Figure 8).  
Additional studies indicated the crucial role of the cold 
insoluble proteins themselves, in the form of fibrinogen and 
fibronectin, in the cryoprecipitation of FVIII (Table 4); or 
rather FVIII complexed to VWF, as Over’s earlier work had 
shown that cryoprecipitate from VWD plasma was deficient 
in FVIII (35). 

Cryoprecipitate—the processing of plasma

Plasma destined for FVIII production needs to be frozen 
within a timeframe which preserves recoverable FVIII. 
Currently available blast freezers were not available in the 
early years of development, but a variety of methods were 
shown to be adequate as far as cryoprecipitate yields were 
concerned (36). In our work in the early 1980s, freezing 
in −40 ℃ cabinet freezers gave inferior results to faster 
freezing achieved in ethanol/dry ice baths (37) (Figure 9).

Once frozen, the storage conditions of plasma require 
the optimization of FVIII yield and cryoprecipitate 
quality, compatible with its further purification. Storage 
temperatures of −20 ℃ appear satisfactory (37), but the 
maintenance of steady temperatures during frozen storage 
are important. Temperature insults of the frozen plasma, 
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Figure 5 Recalcification of blood in donations collected in 
standard citrate-phosphate-dextrose (CPD) anticoagulant. A Ca2+/
heparin solution (10 mM/5 U/mL final concentration) was added 
to the blood at 3 and 18 hours post donation, and plasma was 
separated and assayed for FVIII at 6 and 21 hours.

Table 1 Effect of citrate concentrations on FVIII in plasma (Prowse 
et al., 1987) 

Estimated plasma 
citrate (mM)

Residual percentage FVIII:C Median FpA 
(ng/mL)3 hours 23 hours

20 100 71±9 40

16 82±10 76±9 30

12 105±13 84±9 28

10 112±22 80±13 25

8 118±15 92±18 17

 FpA, fibrinopeptide A.

Table 2 FVIII production—plasma frozen 6 and 18 hours post 
donation (Hughes et al., 1988) 

Production stage
6-hour plasma  

(FVIII yield IU/kg 
plasma)

18-hour plasma 
(FVIII yield IU/kg 

plasma)

Cryoprecipitate 630±195 428±140

Intermediate 
purity concentrate

203±19 192±16
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such as may be encountered during power cuts have some 
effect on cryoprecipitate FVIII yield but have a much 
more marked effect on the fibrinogen content of the 
cryoprecipitate (37) (Figure 10). 

The generation of cryoprecipitate on an industrial scale 
requires the frozen plasma packs to be conditioned to a state 
which will allow the plasma to be thawed under controlled 
conditions. The frozen plasma has to be softened to a 

Table 3 Effect of plasma citrate on [Ca2+] and cryoprecipitate FVIII yields (Prowse et al., 1987)

Production phase

Standard citrate Half-strength citrate

Plasma frozen 3 hours 
post donation

Plasma frozen 18 hours 
post donation

Plasma frozen 3 hours 
post donation

Plasma frozen 18 hours 
post donation

Plasma

FVIII:C (IU/mL) 0.86±0.06 0.56±0.11 1.01±0.13 0.89±0.05

Ca2+ (µM) 50±5 48±6 95±2 95±5

Cryoprecipitate FVIII:C (IU from 100 mL of plasma)

Fast-thaw method 54±7 44±8* 55±5 53±8

Thaw-siphon method 67±20 41±11 69±10 75±7

All methods 60±15 42±9** 62±11 64±14

*, P<0.05 for difference between 3-hour and corresponding 18-hour units; **, P<0.01 for difference between 3-hour and corresponding  
18-hour units.

Figure 6 Effect of anticoagulant on FVIII yield in fractionation 
to small scale FVIII intermediate purity FVIII concentrate (from 
Farrugia et al., 1990). CPD, citrate-phosphate-dextrose.
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Table 4 Effect of plasma composition on cryoprecipitation (from Farrugia, 1992) (34) 

Plasma composition
Yield in cryoprecipitate (% of plasma) (mean ± SD for six experiments)

FVIII:C VWF Ag Fibrinogen Fibronectin

Physiologic ionic strength 47±4 64±12 34±17 56±22

Low ionic strength 60±13 51±6 42±14 34±12

High ionic strength 5±2 31±19 19±7 89±47

Physiologic protein content 53 84 50 94

Low protein content Unmeasurable 10 2 2

Physiologic fibrinogen level 47±8 73±24 55±28 68±26

Low fibrinogen 11±6 11±6 92±33 13±26

Physiologic fibronectin level 42±4 48±20 32±6 88±23

Low fibronectin 3±1 5±3 2±1 25

Figure 9 Effect of plasma freezing rates on FVIII yields and 
distribution in cryoprecipitate. (A) Temperature recorded in plasma 
packs frozen in different media; (B) distribution of factor VIII 
related activities in cryoprecipitate derived from plasma frozen at 
different rates. Mean ± SD of six experiments expressed as U/kg of 
starting plasma (from Farrugia and Prowse, 1985).
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higher temperature to allow detachment of the plasma from 
the plastic pack. The softened but still frozen plasma is then 
thawed. Extending the observations made when studying 
the conditions for storing frozen plasma for blood bank 
cryoprecipitate, we and others (38,39) developed conditions 
for conditioning plasma which minimized the fibrinogen 
content of cryoprecipitate, thus facilitating its extraction 
and purification to concentrate (40) (Table 5). This approach 
allows the fibrinogen content of cryoprecipitate to be 
adjusted to low levels as required in fractionation to pd-
FVIII, and increased to heighten the efficacy of blood bank 
cryoprecipitate as a source of therapeutic fibrinogen. 

The effect of plasma conditioning on cryoprecipitate weight 
has also been described for large-scale manufacture [table 3  
in (32) confirming the independence of FVIII yield from the 
weight of solid cryoprecipitate]. Studying this relationship 
some years ago, I concluded that this independence held 
as long as cryoprecipitate weights did not go below 7 g/kg  
of plasma. Once weights became lower than this level, 
losses of FVIII were increasingly observed, indicating that 

the structure of the solid cryoprecipitate was insufficiently 
robust to retain the FVIII (unpublished observations, 
Figure 11). It is important to note that FVIII is an 
incidental “contaminant” in cryoprecipitate, whose bulk 
composition is other proteins. I continue to be surprised at 
fractionation chemists in today’s modern plants who express 
astonishment when told that cryoprecipitate from people 
with haemophilia forms as easily as from normal donors! 

The thawing of industrial scale lots of frozen plasma 
to cryoprecipitate was shown by the group under Peter 
Foster at the Protein Fractionation Centre to result in 
optimized FVIII yields when using continuous thawing (41),  
analogous to the “thaw-siphon” technique for blood bank 
cryoprecipitate developed in Brisbane and Edinburgh 
(42,43). I reflect that these principles, both at blood bank 
scale and at industrial scale, achieved FVIII yields in 
cryoprecipitate approaching 600 IU/kg. This indicates 
that, if progress had been made at commensurate levels in 
the further purification of FVIII, yields would exceed the 
apparently immutable 200 IU/kg. But, events, particularly 
the need to develop viral inactivation, overtook these 
developments, and it appears that the dominance of 
recombinant products has dissuaded fractionators from 
continuing to study the optimization of FVIII.

Final reflections

For the generation of patients born after the 1980s, pd-
FVIII, at least in the developed economies, has little 
relevance. And for the scientists engaged in the rapidly 
consolidating Western plasma industry, dominated by 
companies which generate most of their revenue from 
recombinant products, pd-FVIII is rapidly assuming the 
status of a quaint anachronism. 

Balancing this perspective is the importance of pd-FVIII 
in delivering care to haemophiliacs in the developing world. 
Efforts are continuing to attempt to divert the surplus of 
pd-FVIII in publicly funded blood systems to areas which 

Table 5 Effect of plasma-softening on factor VIII production (Farrugia et al., 1992)

Softening method [n]
Cryoprecipitate weight  

(g/kg plasma)

Fibrinogen (mg/kg plasma) FVIII (IU/kg plasma)

Cryoprecipitate Final eluate Cryoprecipitate Final eluate

Warm [10] 10.9±0.61 1,200±247 90±33 435±51 276±42

Cold [9] 8.8±0.12 800±148 30±6 411±68 264±29

None [7] 7.9±0.07 480±140 28±3 452±77 250±26

Factor VIII IU/kg plasma

600

450

300

150

10 155 Cryo weight 
g/kg plasma

Figure 11 The effect of cryoprecipitate weight on FVIII yield. 
Data from modeled bulk cryoprecipitate production from 10 kg 
lots of plasma.
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need them and cannot afford the sophisticated, but hugely 
expensive, biotechnology products (44). Hence, pd-FVIII is 
still important and life-saving. 

As discussed in the accompanying paper, the SIPPET 
study (ref) has only been the most recent addition to an 
impressive body of evidence that pd-FVIII results in a lower 
incidence of inhibitors in previously untreated patients 
(PUPs) than recombinant FVIII (rFVIII). This evidence 
cannot continue to be ignored. Until a final cure is achieved 
for haemophilia A, the problem of inhibitors demands the 
implementation of any measure which can lessen it. The 
patients deserve nothing less. 

As for this author, I am happy with my career with factor 
VIII. The fresh-faced researcher who thawed plasma in 
Edinburgh 35 years ago (Figure 12) has seen much in the 
field since then. And pd-FVIII was up at that time, then it 
went down…and now, happily, it is up again.
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