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Introduction

Immune thrombocytopenia (ITP) is a complex and rare 
autoimmune disease characterized by reduced platelet 
counts (peripheral blood platelet count <100×109/L) that 
can lead to an increased bleeding risk (1,2). ITP may be 
a primary condition in the absence of other underlying 
causes or disorders, or it may be secondary, associated 
with or caused by other diseases such as an infection, an 
autoimmune disease, or malignancy (2). ITP can be further 
classified according to The International ITP Working 

Group (IWG) as newly diagnosed ITP (acute; up until 
3 months), persistent ITP (lasting 3–12 months, more 
prevalent in children), chronic ITP (lasting >12 months, 
more prevalent in adult patients) (2-4). This classification 
is important because patients with newly diagnosed and 
persistent ITP have significantly higher remission rates than 
patients with chronic ITP (2,5-8). Therefore, physicians 
usually recommend a more rigorous treatment plan for 
patients with chronic ITP, which is more predominant in 
adult patients (2). 

Signs and symptoms, mainly hemorrhagic symptoms, 
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are widely variable. While the predominant symptom 
is bleeding, and increased risk of bleeding poses the 
major clinical problem for ITP, bleeding symptoms may 
not always be present as the clinical presentation varies 
among ITP patients (2,5-10). Most of ITP patients are 
asymptomatic at presentation or show mild skin bruising 
and mucocutaneous bleeding (e.g., sporadic bruises or 
epistaxis), while only few patients present with severe, life-
threatening bleeding, such as gastrointestinal bleeding and 
rarely, intracranial hemorrhage (4,11,12). Noteworthy, 
it has been shown that the risk of severe bleeding is not 
necessarily correlated with platelet counts unless the 
absolute platelet count is lower than 20×109/L, as other 
factors such as age, lifestyle and other clinical condition 
of the patient may play a role (12-17). Noteworthy, while 
there are similarities between children and adults with 
ITP, there is increased evidence that highlight several 
distinctive characteristic of adult ITP, such as higher rates 
of comorbidities and chronicity compared to children with 
ITP (18-20), and which can be valuable characteristics 
to further improve and personalize the diagnosis and 
treatment of this disease.

The diagnosis of ITP is one of exclusion (6). Thus, 
and in the absence of a “gold standard” diagnostic test for 
ITP, the diagnosis for this disorder remains clinical where 
history, physical examination, and laboratory testing are 
necessary to exclude other causes of thrombocytopenia 
(1,6,21,22). Currently, there are no clear cut-off diagnostic 
tools or laboratory tests to diagnose ITP, to predict the 
treatment response, or to identify the best treatment 
option for ITP patients. Therefore, the International 
Working Group and the American Society for Hematology 
published guidelines for the diagnosis and management of 
ITP (5,6,9,10). However, the existing guidelines are based 
on opinion of professionals and experts more than on the 
evidences of the studies (23,24). 

Although treatment for patients with ITP should 
always be personalized to the individual patient (5,25), 
glucocorticoids (steroids) and intravenous immunoglobulin 
(IVIg) ,  which are  the most  common therapeut ic 
options, having replaced splenectomy, remain the initial 
ITP treatment for both newly diagnosed patients and 
chronic patients needing immediate rescue therapy (5,6). 
Glucocorticoids (GCs) are the conventional front-line 
therapy for ITP patients, typically either as prednisone or 
dexamethasone (5,6). Prednisone, the standard treatment 
recommended in practical guidelines for ITP, administrated 
at 1 mg/kg daily until the platelet level increases (≥50×109/L;  

can require several days to weeks) is considered the 
most common treatment strategy (5,26,27). GCs are an 
inexpensive treatment option, and it has been observed that 
about 70% of patients respond to the treatment within 1– 
2 weeks (28). Unfortunately, it has been indicated that 
about 70–90% of patients treated with GCs relapse 
when the treatment is stopped or even reduced (29). In 
addition, it has been revealed that GCs are associated with 
potentially severe side effects, and the detrimental effects 
of corticosteroids can create significant complications and 
reduce the quality of life of patients (6). Although IVIg 
is more expensive than GCs, it is better tolerated and 
is generally considered to be a safe therapy due to the 
minimal side effects (6,30,31). In addition, in contrast to 
conventional GCs treatment, it has been shown that IVIg 
induces recovery of platelet counts within a couple of 
days (32), demonstrating its therapeutic advantage when a 
rapid increase in the number of platelets is required, such 
as patients with a high risk of critical bleeding (6,23,29,33). 
IVIg is a blood product enriched with IgG antibodies 
that is obtained via collection and pooling of human 
plasma from several thousands of donors (34-38). IVIg is 
generally recommended for ITP patients under critical 
bleeding condition, as an emergency rescue procedure, and 
even for those not responding to GCs or cannot tolerate 
glucocorticoids (6,23,33). Several clinical trials have shown 
that IVIg (up to 1 g/kg) is an effective treatment in 70–80% 
of patient with ITP (39-42). The aim of this review is to 
focus on the efficacy and the general mechanisms of IVIg 
therapy used to treat adults with primary ITP. However, 
first we will provide an introduction into the pathogenesis 
of ITP to better understand the rationale of this important 
treatment. 

Pathophysiology of ITP

ITP is an autoimmune hemorrhagic disease and its 
pathophysiology involves both excessive platelet destruction 
in the spleen and liver and insufficient platelet production 
in the bone marrow, resulting in low platelet counts (43-45). 

Increased peripheral platelet destruction

Traditionally, platelet destruction in the spleen and/or 
liver, and less so in the periphery, is the main cause for 
low platelet counts in ITP. Antibody-coated platelets 
are destroyed by macrophages in the spleen and/or 
liver through interaction with Fc-gamma receptors  



Annals of Blood, 2021 Page 3 of 20

© Annals of Blood. All rights reserved. Ann Blood 2021;6:2 | http://dx.doi.org/10.21037/aob-20-87

(FcγR) (46) (Figure 1A). In the 1950s, Harrington 
infused blood from ITP patients to healthy volunteers, 
one of  which was himself ,  and showed that most 
recipients demonstrated profound thrombocytopenia/
low platelet counts (47). The transmissible causative 
factor in the blood serum was subsequently identified 
as an immunoglobulin, primarily immunoglobulin G 
(IgG), which was the first proof that a humoral factor is 
involved in ITP pathogenesis (48). Noteworthy, while 
the antiplatelet antibodies in ITP are primarily IgG, 
other immunoglobulin isotypes (IgA and IgM) can also be 
found (49). Anti-platelet antibodies are directed against 
platelet membrane glycoprotein (GP) or GP complexes 
mainly GPIIb/IIIa and GPIb/IX/V, and less against GPIa/
IIa, IV or VI (49-52). As a result, anti-platelet antibodies 
targeting GPIIb/IIIa participate in platelet destruction 
when the platelets are opsonized by the attachment of 
autoantibodies to the GP, then bound to FcγRs expressed 
on macrophages, and phagocytosed (43,44). Following 
the phagocytosis, these macrophages present a platelet-
derived antigen that stimulates CD4+ T cells, which can 
contribute in the activation of B cells (53). This activation 
leads to the differentiation of auto-reactive B cells into 
plasma cells to produce anti-platelet antibodies (53,54). 
While autoantibodies against platelet GP remains a major 
mechanism in the ITP pathogenesis, it is important 
to mention that these autoantibodies are not detected 
in almost half of patients with ITP, which suggest the 
involvement of other mechanisms (55). For instances, it 
has been shown that the immune platelet destruction in 
ITP is also associated with wide range of B-cell and T-cell 
involvement (46,56,57). In addition to removal of platelets 
by FcγR-mediated mechanisms, anti-GP1b/IX has an 
unusual activity where the antibody binds to platelets and 
removes sialic acid (58,59). These desialylated platelets 
are then removed through interaction with the Ashwell-
Morell receptor on hepatocytes in the liver (60). This 
interaction results in production of the platelet growth 
factor, thrombopoietin (TPO), likely as a feed-back 
mechanism in an effort to produce more platelets. CD8+ 
cytotoxic T lymphocytes (CTLs) also plays a role in ITP 
and can directly kill platelets and megakaryocytes and/or 
induce desialylated platelets (61,62) (Figure 1A).

Furthermore, while genetic predispositions in ITP are 
uncommon, there are genetic polymorphisms in cytokines 
and FcγRs that may increase the risk of developing the 
disease in some people by participating in the initiation of 
the autoimmune process (63-68). Molecular mimicry may 

play a role in the development of cross-reactive platelet 
auto-antibodies as certain viral and bacterial pathogens such 
as human immunodeficiency virus (HIV), hepatitis C virus 
(HCV), varicella-zoster virus (VZV) and Helicobacter pylori 
(H. pylori), may express antigens/proteins that are similar 
to platelet GPIIIa (69-72). Interestingly, it has been shown 
that some peptides from these viral proteins are recognized 
by anti-platelet antibodies in vitro due to the similarities 
between the sequences of these viral proteins and platelet 
GPs (22). Although the absence of these bacterial and viral 
infections leads to remission in most patients with ITP, 
there is still a high variation in response rates in patients 
infected with H. pylori (73). 

In addition, anti-platelet antibodies can mediate 
complement-dependent cytotoxicity, inhibit megakaryocyte 
function, and induce desialylation-induced platelet 
destruction (74-78). It has been shown that the destruction 
of platelets in ITP patients results in a shorter life span 
compared to healthy humans as confirmed by different 
groups using Chromium-51 labeled platelets or Indium-111 
labelled platelets (79-83). This may be a result of an 
activated mononuclear phagocyte system in ITP patients. 
Noteworthy, the theory of increased platelet destruction 
in the spleen was also supported by the effectiveness of 
splenectomy in raising platelet counts in patients with ITP 
(81,84-86).

Decreased platelet production

Besides the platelet destruction in the circulation, 
mechanisms leading to inadequate platelet production 
in the bone marrow due to an immune response against 
megakaryocytes is also involved in the pathogenesis of ITP 
(87-90). While the immune mechanisms of insufficient 
platelet production in ITP remain not very well-known, 
there are some indications in some studies. 

It has been shown that megakaryopoiesis is strongly 
affected in ITP as evidenced by an increase in the proportion 
of premature megakaryocytes and impaired development, 
which can be characterized by a decrease in the granularity, 
ploidy, cytoplasmic vacuolization and nuclear condensation, 
leading to significant reduction in platelet production 
(86,88,91). The results of radiolabeled platelet studies have 
revealed that the megakaryocytes in healthy individuals were 
able to produce 10× as many platelets as the megakaryocytes 
from patients with ITP during states of blood loss (45,86). 
A decrease in megakaryocyte maturation, abnormalities in 
thrombopoiesis, and inadequate platelet production rely on 
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Figure 1 The pathophysiology of ITP and how first-line therapies ameliorate the disease. (A) No treatment. Platelets (orange) are produced 
by megakaryocytes (MK) located in the bone marrow. Autoantibodies (purple) to platelet glycoproteins can be produced by plasma B-cells 
(PC) in the bone marrow, but predominantly are produced within the spleen. These autoantibodies are produced as a result of loss of 
immune tolerance and require antigen presenting cells (APCs), CD4+ helper T-cells and B-cells. The autoantibodies recognize and bind 
to platelet glycoproteins and interact with monocyte-macrophages (Mϕ) in the spleen and/or liver through binding to Fcγ receptors 
(FcγRs; salmon pink), resulting in their removal from the circulation due to phagocytosis. Furthermore, platelets can lose sialic acid and 
these desialylated platelets (black) can be removed in the liver by hepatocytes (dark blue) expressing the Ashwell-Morell receptor (green). 
This results in the production of thrombopoietin (TPO) but also increased clearance of the desialylated platelets. In addition to receptor-
mediated increased platelet clearance, CD8+ T-cells (cytotoxic T-lymphocytes, CTLs), can also recognize platelet glycoproteins and destroy 
circulating platelets or induce desialylated platelets. As platelet glycoproteins are found on the surface of megakaryocytes, both platelet 
antibodies and CD8+ CTLs can attack the megakaryocytes causing apoptosis and a reduction in platelet production. ITP patients also have 
increased production of pro-inflammatory cytokines. (B) Glucocorticoid (GC) treatment. First-line therapies to ameliorate ITP include 
the primary class of drugs known as glucocorticoids. GCs are small-molecule, powerful immunosuppressive agents used to treat a myriad 
of autoimmune diseases. GCs (red) in the blood enter various cell compartments and then, once inside the cell, bind to glucocorticoid 
receptors, disrupting signal transduction which affects most aspects of the immune response. Mϕ phagocytosis of autoantibody-coated 
platelets and hepatic cell clearance of desialylated platelets is inhibited (⊥). GCs also down-regulate autoantibody production in the spleen 
by inhibiting the CD4+ T-helper cell compartment resulting in inhibition of the immune response and CD8+ CTL killing (⊥). GCs also 
result in inhibition (⊥) of pro-inflammatory cytokine production. (C) IVIg treatment. IVIg is first-line therapy if a patient is bleeding, as its 
ability to increase platelet numbers is more rapid than that of GCs. The mechanism of action of IVIg amelioration of ITP when it enters the 
blood is less understood than that of GCs. Mouse models reveal that IVIg (yellow) likely can bind to free Fc receptors on Mϕ; thus, blocking 
their interaction with antibody-coated platelets, increasing the numbers of circulating platelets. In addition, IVIg induces thrombopoiesis in 
megakaryocytes, increasing production of platelets which also increases circulating platelets. Like GCs, IVIg is an anti-inflammatory agent 
and has been shown to reduce pro-inflammatory cytokines in ITP, similar to GCs, and its effects on cytokine profiles likely also affects T- 
and B-cell responses.
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a specific immune response caused by autoantibodies and/or 
T-cell mediated megakaryocyte inhibition and destruction 
(46,92-94).

Additionally, it has been shown that inappropriate levels 
of TPO contribute to inadequate platelet production in ITP 
(53,95,96). TPO, the main growth factor of megakaryocytes, 
is predominantly and constitutively synthesized in the liver 
to regulate thrombopoiesis via binding and activation of its 
receptor, cMPL, on the megakaryocyte and platelet (97,98). 
Thus, the higher number of platelets released into the 
circulation, the lower TPO level required to stimulate the 
megakaryocytes to produce more platelets (99). Therefore, 
levels of TPO increase in the serum as an automatic 
compensatory response to thrombocytopenia, which has 
been observed by several studies (95,100-105). However, 
this is not the case in ITP as despite the low number of 
platelets in the circulation, the TPO concentration is not 
elevated and, instead, remains within the range of healthy 
individuals, which is not enough to bind to cMPL on 
megakaryocytes to increase platelet production in the bone 
marrow (53,96,104-106). Moreover, studies using electron 
microscopy showed that megakaryocytes from patients with 
ITP frequently undergo apoptosis (107,108), which may 
further contribute to the insufficient platelet production in 
these patients.

Finally, ITP has been found to present a skewed cytokine 
profile (109). Pro-inflammatory cytokines such as IL-2/IL-
17 produced by Th1/Th17 T-cells have been documented, 
which can have a profound effect on T-regulatory cells and 
Th2 anti-inflammatory cells.

While an increase in platelet destruction and a 
decrease in platelet production are central aspects in the 
pathophysiology of ITP, patients with ITP vary with the 
degree of these two processes with several abnormalities 
and multiple components of the immune system involved 
(58-62,109). Therefore, this complexity and variations have 
led to different approaches and opened different ways for 
the design of specific immunotherapies to treat patients 
with ITP based on a case-by-case basis. 

Pediatric versus adult ITP

ITP is a disorder that occurs in both adults and children 
with considerable dif ferences between these two 
populations (110). For instance, the incidence rate of 
primary ITP is approximately 1.9–6.4/100,000 in children 
per year, and about 3.3–3.9/100,000 adults per year  
(2-4,111) .  Noteworthy,  research studies  and the 

epidemiologic data suggest that ITP that occurs in adults 
under the age of 65 years is more prevalent in women (ratio 
~2:1) (2,4,112-117). One of the most well-documented 
distinctions between adult and children is that ITP in 
most pediatric patients tends to be acute/transient and 
more likely resolved eventually without any treatment. 
Most children undergo spontaneous remission and rarely 
experience active bleeding, although most of these patients 
still experience skin bruising and bleeding (5,6,18,19). 
Chronic ITP, however, is more prevalent in adult patients 
(~ 70–80%) and difficult to treat, as adults with ITP tend 
to have a higher risk of bleeding and a lower spontaneous 
remission rate (4,23,118). Therefore, current treatment 
protocols and practice guidelines for ITP are considered 
and developed in relationship with the clinically relevant 
differences between children and adult patients (5,6,23,24). 

The current goals of treatment for patients with ITP are 
to prevent or minimize serious risk of bleeding, improve 
quality of life, and to achieve a safe hemostatic platelet count 
(generally considered to be around 20–30×109/L), which 
can vary between patients (119,120). Thus, considering the 
nature of the disease and symptoms, it has been shown that 
adults with ITP often undergo pharmacological therapy 
and splenectomy more than children (5,6,117). For newly 
diagnosed patients with ITP, observation and waiting 
without treatment is a standard approach for children 
whose platelet counts are above 20×109 /L with no or 
mild bleeding, while treatment is incorporated as standard 
clinical practice for adults with a platelet count below 
30×109/L, which is more likely influenced by the higher 
risk of bleeding in adults (5,6,117,121-123). According 
to the American Society of Hematology 2011 evidence-
based guidelines and the International Consensus Report, 
Glucocorticoids, IVIg, or Rh immune globulin (RhIg) 
(anti-D) are recommended as first-line treatments for ITP, 
and they are used in both children and adults with ITP 
(1,5,6) (see Table 1). In this review article the focus will be 
on IVIg therapy used to treat ITP in adult patients. 

IVIg efficacy in adults with ITP 

IVIg is a blood product enriched with IgG antibodies that is 
obtained via collection and pooling of human plasma from 
several thousands of donors (34-38). The manufacturing 
processes of IVIg include several steps such as precipitation, 
chromatography techniques and viral inactivation steps to 
purify the products, maximize tolerability and efficacy, and 
to minimize side effects (124,125). While the serum IgG is 



Annals of Blood, 2021 Page 7 of 20

© Annals of Blood. All rights reserved. Ann Blood 2021;6:2 | http://dx.doi.org/10.21037/aob-20-87

the dominant fraction in all the prepared IVIg, IVIg also 
contains small amounts of other proteins and components 
such as albumin, IgA, IgE, IgM, sugars, salts, solvents and 
buffers, which vary from batch to batch depending on the 
preparation and manufacturing processes (34,36). These 
variabilities may contribute to tolerability complications and 
side effects post infusion (34,36). Therefore, these variables 
should be carefully considered in relation to the clinical and 
physiologic conditions of the recipient. In general, IVIg is 
considered safe and well tolerated with minimal mild and 
transient side effects (most commonly; headache, fever, 
chills and nausea) and rare serious adverse events (AEs) such 
as thrombosis and hemolysis (6,31,36,126) (see below). 

IVIg has been used for more than 40 years to treat ITP, 
initially used to treat primary immunodeficient patients and 
then later approved to be used to treat several autoimmune 
diseases and other conditions, including ITP (127-133). 
In ITP, IVIg is generally considered an effective and safe 
treatment option as high-quality evidences showed its 
favorable immunomodulatory effects (134,135). Although 
the mechanisms of actions of IVIg are complex and still 
unclear, there are several mechanisms that have been 
proposed and extrapolated (discussed in further detail 
below); but most of these mechanisms are extrapolated 
based on animal models. Nevertheless, in humans, it has 
been revealed that IVIg plays a role in increasing the 
platelet lifespan in vivo by reducing the splenic clearance of 
platelets (136), via Fc-dependent mechanism (6,137). 

IVIg was initially shown to be effective in the treatment 
for ITP when Imbach and colleagues, early in the 1980s, 
showed an immediate increase in platelet counts in patients 
with ITP post infusion with IVIg (127). In their study, high-
dose IVIg was given at 400 mg/kg over 5 consecutive days. 

This was the first breakthrough study describing the use of 
IVIg to treat ITP. Subsequent studies by the same group 
showed that more than 80% of ITP patients positively 
responded to IVIg shortly after treatment (138). Later 
studies confirmed the effectiveness of IVIg in the treatment 
of ITP in adult populations, with a comparable clinical 
response rate, leading to the widespread use of IVIg as an 
immunomodulatory therapy (6,139-141). 

As the immunomodulatory effects of IVIg in ITP depend 
on the administered dose, the efficacy of different IVIg 
doses was studied to evaluate and establish the optimal IVIg 
dose for adults with ITP (142,143). As a result, the original/
historical dose of IVIg (administrated at 0.4 g/kg daily for  
5 days) has been replaced by using a higher initial dose (0.8– 
1 g/kg) for a short course of treatment, with the possibility 
to repeat the treatment based on platelet response. A 
randomized, multicenter trial showed that a 1 g/kg dose of 
IVIg was more effective in adults with ITP than a 0.5 g/kg  
regimen, as the results clearly demonstrated a greater 
increase in platelet count (106×109/L versus 55×109/L) and 
platelet response rate (67% versus 24%; day 4) in the higher-
dose group compared with the lower-dose group (142).  
In this study, they also showed that additional IVIg doses 
for a total dose of 2 g/kg for non-responders lead to a 
response rate of 78% in the entire population in the 
study. To date, numerous studies and clinical trials have 
demonstrated that high-dose IVIg (1–2 g/kg) has become 
an effective first-line therapy in up to 80% of adult patients 
with ITP (37,40,131,134,144-146). On the basis of these 
studies, the current dosing guidelines by the American 
Society of Hematology is administration of 1 g/kg IVIg as 
an initial single dose, repeated as needed based on platelet  
response (5).

Table 1 Comparison of treatment regimens for pediatric versus adult with immune thrombocytopenia (ITP)

Variables Pediatric Adult

Trigger→ Often secondary (viral) Usually primary/idiopathic

Course→ Spontaneous remissions common Low (up to 20%) spontaneous remission rate

1st line→ IVIg; RhIg; or glucocorticoids +/− IVIg Glucocorticoids; IVIg*; RhIg**; IVIg + glucocorticoids

2nd line→ TPO receptor agonists, rituximab, splenectomy 
(less likely to be used in children), others 
(immunosuppressant medications, etc.)

TPO receptor agonists, rituximab, splenectomy, others 
(immunosuppressant medications, Syk inhibitors, 
combination therapy)

*, IVIg is appropriate first-line therapy in adult ITP patients with bleeding, or at high risk for bleeding, who require a surgical procedure, or 
who are unresponsive to glucocorticoids. **, RhIg (anti-D) can be used in adults, but it is uncommon because of the black box warning 
from the FDA about potential hemolytic anemia and disseminated intravascular coagulation (DIC). IVIg, intravenous immunoglobulin; RhIg, 
Rh immune globulin (anti-D); TPO, thrombopoietin; Syk, spleen tyrosine kinase. 
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Noteworthy, while serval studies have demonstrated the 
effectiveness of IVIg (up to 1 g/kg) in patients with ITP 
with a response rate around 80%, most of those studies 
used only 5% IVIg (146-148). Within the past few years, 
however, higher concentrations of IVIg (10%) products have 
been developed and introduced as a new therapeutic choice 
to improve treatment outcomes (17,40). In comparison to 
5% IVIg formulation, the 10% IVIg product was associated 
with shorter infusion time, which resulted in decreasing 
the patients’ length of stay in hospitals (40,41). Indeed, a 
number of studies have now been performed to assess the 
efficacy and safety of several novel human IVIg 10% such 
as Panzyga® (Octapharma; ready-to-use) (40), 10% IVIG-
SN (Green Cross Pharma) (39), Octagam® (Octapharma; 
ready-to-use) (149) and Privigen® (CSL Behring) (42). Ten 
percent IVIg is now the standard product used to treat ITP; 
however, 20% IVIg has recently come onto the market for 
subcutaneous administration (SCIg) (150-153). Although 
not currently used to treat ITP, this product shows promise 
to replace intravenous IVIg administration in the future 
and further studies will show if this therapeutic approach 
has efficacy in adult ITP (150). Even though the current 
IVIg products have a good safety profile and have been 
shown to be effective treatment for patients with ITP, there 
are challenges associated with product production, access 
and availability. Therefore, introduction of new or better 
products is also needed to maintain a steady and adequate 
supply and to provide additional options for patients. 

While IVIg administered at a dose of 1–2 g/kg typically 
leads to rapid increases in platelet counts (within 24 to 
48 hours) in over 80% of patients, it has been found that 
the remission post IVIg treatment lasts no longer than 3 
to 4 weeks, indicating that this response may be transient 
(142,154,155). Accordingly, once a patient relapses, 
particularly when platelet counts fall below 30×109/L, 
repeat IVIg administration or additional therapy, such as 
combination therapy using IVIg plus glucocorticoids or 
second-line therapy such as rituximab, may be necessary as 
maintenance therapy or to achieve a stable clinical condition 
for adult patients with ITP (6,139-141,143,155-157).  
Therefore, a better understanding of the properties and 
mechanism(s) of action of IVIg, may not only improve 
the current products but also may influence the future of 
immunoglobulin-based therapeutics. 

IVIg mechanism of action 

Following the serendipitous discovery in 1981 by Imbach 

et al. (127,158) that high-dose IVIg could ameliorate ITP 
in secondary immune deficiency pediatric patients with 
concomitant ITP, studies by Fehr et al. (139) showed that 
following administration of IVIg, clearance of radiolabeled 
antibody-opsonized red blood cells was inhibited. These 
observations led to the hypothesis that the mechanism of 
action of IVIg to ameliorate ITP was through blockade of 
the Fc receptors (139,159-161) (Figure 1). This amazing 
discovery of the immunomodulation of ITP by high-
dose IVIg caused other clinicians to begin to examine the 
use of IVIg for the treatment of other autoimmune and 
inflammatory diseases (162). Indeed, both evidence-based 
and off-label use of IVIg in many studies demonstrated 
the utility of using IVIg for the treatment of a variety of 
conditions (163,164). These clinical findings of the broad 
immunomodulatory properties of IVIg resulted in the 
expansion of the possible mechanism(s) of action of this 
biologic to include immunomodulation due to the anti-
inflammatory properties of IVIg (165,166). 

As scientists became more interested in how IVIg 
could ameliorate various diseases, animal models were  
developed (167). The first studies in animal models 
were in mice given ITP by passive anti-platelet antibody 
administration (165,167,168). Studies by different investigators 
in mouse models of ITP and arthritis revealed a number 
of possible mechanisms (165,166,168-170). One theory 
developed over time has been repeatedly propagated (171). 
In this theory, Ravetch and his protégé Nimmerjahn 
(165,166,171), have proposed that a small fraction (10%) 
of total IVIg sialylated in the Fcγ domain, engages the 
cluster of differentiation 209 (CD209) receptor, also known 
as DC-SIGN on dendritic cells (172). Engagement of 
DC-SIGN causes dendritic cells to release interleukin-33  
(IL-33) (173). IL-33 is a Th2 polarizing cytokine that would 
then promote the release of IL-4 from basophils at sites 
of inflammation. IL-4 acts on macrophages to upregulate 
the expression of the inhibitory Fcγ receptor (FcγRIIB), 
which lowers inflammation (174). This model proposes 
that the subsequent upregulation of FcγRIIB on effector 
cells raises their threshold for activation, thus allowing for 
a reduction in phagocytosis of antibody-opsonized platelets 
and inflammation. Although this model of IVIg action has 
been touted through numerous publications, it has yet to 
be supported by other investigators; instead, this model has 
been refuted by many investigators. 

First, passive antibody-induced ITP in mice does not 
create an inflammatory environment (175) and sialylation 
of IVIg or a role for FcγRIIB, IL-33, IL-4 or basophils 
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has not been found by other investigators as playing a role 
in the mechanism of action of IVIg (176-184). However, 
blockade of FcγR, especially FcγRI and FcγRIII, remains a 
viable mechanism in ITP. Indeed, studies in humans using 
an anti-FcγRIII, clone 3G8 or a humanized, deglycosylated 
variant of 3G8, GMA161, showed improvement in platelet 
numbers in treatment-refractory ITP patients; however, this 
amelioration of the ITP was transient (185-187). Recently, 
it was shown that antibody-coated platelets are removed by 
macrophages through FcγRI and FcγRIII suggesting that 
the mechanism of IVIg may be through blockade of both 
of these receptors (188). Interesting, however, is that it has 
been shown that it takes about 70–100 times more IVIg 
than mouse IgG to block in vitro phagocytosis of sheep 
red blood cell (SRBC)/anti-SRBC using mouse monocytes 
or RAW 264.7 mouse macrophages (189). These findings 
raise additional questions as to how IVIg can efficiently 
ameliorate ITP solely through FcγR blockade. 

Earlier findings in the mouse ITP model have shown 
that IVIg can induce thrombopoiesis as part of its 
mechanism of action (190). IVIg inducing thrombopoiesis 
has been found in humans with ITP and is likely part 
of the amelioration process (191,192); although, the 
mechanism of how IVIg can induce thrombopoiesis is 
uncertain. Megakaryopoiesis is regulated by TPO and 
interleukin-11 (IL-11) (193). Recent work has shown 
that IVIg can induce IL-11 in mice and in humans 
(170,175,194). Recombinant human IL-11 (rhuIL-11) 
is  also used to ameliorate chemotherapy-induced 
thrombocytopenia where it is treatment of choice 
(195,196). An initial pilot study of using rhuIL-11 to treat 
6 patients with treatment-refractory ITP failed to show 
any efficacy and was moderately toxic (197). However, 
recent studies are suggesting that use of rhuIL-11 for the 
treatment of ITP may be helpful (198,199) and appears 
promising. Indeed, in a mouse model of ITP, it was shown 
that inhibition of IL-11 using a neutralizing antibody 
partially prevented the IVIg-mediated amelioration of the 
ITP. Also, when using recombinant IL-11 instead of IVIg, 
partial amelioration of the ITP was achieved. Thus, the 
mechanism of IVIg in amelioration of ITP may involve 
induction of IL-11 which then acts on megakaryocytes 
to increase thrombopoiesis (183). This possibility needs 
additional exploration. 

To summarize,  the mechanism as  to how IVIg 
ameliorates ITP remains uncertain and because IVIg also 
ameliorates a number of autoimmune, inflammatory and 
neuropathy conditions, its mechanism of action is likely 

complex and involves multiple mechanisms (169,200-202).

Therapies for adult ITP 

Therapies for the treatment of adult ITP have advanced 
considerably over the years (203-208). Today, there are a 
number of first- and second-line therapies available as well 
as a number of potential therapeutics in various stages of 
development. IVIg has become a first-line therapy for ITP 
in adults. It is of interest to have an overview of ITP first-
line therapies and understand how IVIg has become one of 
the main therapeutics for treatment of this condition. Below, 
we will explore the history of first-line therapy for ITP. 

First-line therapy for ITP

Splenectomy
Historically, the standard first-line therapy for ITP 
was splenectomy, which is very effective and relatively 
inexpensive (203,204). Splenectomy for ITP was first 
performed by Kaznelson in 1916 (203). It has a good track 
record in the treatment of ITP and was shown to have 
an approximate 80% response rate, inducing complete 
remission in approximately 50–70% of patients (204-211);  
although, relapse of ITP can occur years after the 
procedure (212). Splenectomy, however, requires surgery 
under anesthesia and, therefore, has the possibility of severe 
complications due to the surgery (212-216). With the advent 
of therapies having fewer potential complications compared 
to splenectomy, such as immune suppressants, IVIg and 
RhIg anti-D therapies, splenectomy was relegated to a 
last-resort second-line therapy. Today it is recommended 
to only be used in adults with ITP for ≥3 months who are 
glucocorticoid-dependent or have no response to these 
steroids (9). 

Glucocorticoids
Commonly referred to as “steroids”, corticosteroids 
comprise two groups of adrenal cortex-produced steroids, 
some of which are used clinically. Glucocorticoids (GCs) 
represent the most important and frequently used class 
of drugs in the management of many inflammatory 
and immunologic conditions (217). The glucocorticoid 
prednisone was first used to treat ITP in 1958 (218). 
Because of its efficacy for amelioration of ITP (82) and 
less significant side effects compared to splenectomy, 
prednisone became a first-line therapy for ITP in 1982 
in Japan and in 1996 in the USA (82). Prednisone 
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and dexamethasone are the glucocorticoids of choice 
for first-line therapy of ITP (9,82,219-221). GCs are 
known to enter many different cell types through a 
receptor-mediated mechanism or passage directly into 
the cell. Once inside the cell cytosol, GCs bind to 
glucocorticoid receptors. This interaction results in 
significant effects on signal transduction, which in turn 
affects the normal function of cells. The final result is 
a profound effect of glucocorticoids on the immune 
response and immune cell function, such as macrophage 
phagocytosis and antibody production (222) (Figure 1B). 
Unfortunately, glucocorticoids are also associated with 
serious side effects. Adrenal suppression, dyslipidemia, 
hyperglycemia, Cushing’s syndrome, cardiovascular 
disease, osteoporosis, psychiatric disturbances, and 
immunosuppression are among the most important 
side effects of glucocorticoids (223). These side effects 
are especially noticeable at high doses for prolonged 
periods. Despite these drawbacks, glucocorticoid therapy 
remains a first-line therapeutic approach to the resolution 
of ITP. However, there remains cases of resistance to 
glucocorticoids; therefore, other additions to the first-
line of therapy were needed and this was solved by the 
serendipitous discovery that immunoglobulin therapy 
was highly efficacious at amelioration of ITP (158,224)  
(Figure 1C ). 

IVIg and anti-D
The use of IVIg for the treatment of ITP was first 
described in 1981 by Imbach et al. (127,158). High-
doses of IVIg (1 to 2 g/kg) were first used in a pediatric 
patient having secondary immune deficiency complicated 
with ITP (127,158). Surprisingly, this patient and the 
subsequent patients, showed an increase in platelet numbers 
following the IVIg therapy (139,159,225,226). Later studies 
used high-dose IVIg therapy in adult ITP with some 
mixed results but, generally, it worked and, along with 
glucocorticoids and anti-D, IVIg is now a standard first-
line therapy for adult ITP (205-212,226) (see below about 
anti-D and combination therapy). 

Although IVIg has been shown to be well tolerated 
with few and mild side effects, with headache the primary 
complaint, it does, nevertheless cause some rare but 
significant AEs that include thrombosis (227,228) and 
hemolysis due to the anti-A and anti-B iso-agglutinins 
contained in the product (229). IVIg-associated hemolysis 
is more common that thought and can result in life-
threatening hemolysis following high-dose therapy 

(229,230). 
Of interest is the fact that early IVIg products contained 

various alloantibodies to red blood cells that were not iso-
agglutinins. Antibodies such as anti-Rhesus (RhD), anti-D, 
were rather common contaminants of IVIg (231,232). 
These antibodies, especially anti-D, were thought to be 
responsible for the low to modest hemolysis that was 
routinely seen when using IVIg to treat ITP patients (233). 
This antibody-induced hemolysis was perceived by Mueller-
Eckhart’s team to be mostly due to anti-D contained in 
the IVIg product and led these investigators to try anti-D 
itself as a therapy for ITP (233). Their thinking was that 
the mechanism of IVIg amelioration of ITP may involve 
an antibody-RBC interaction that results in hemolysis. 
These investigators were the first to use RhIg containing 
high levels of anti-D to treat ITP patients; and it worked 
(233-235). Thus, use of RhIg (anti-D) became a first-line of 
therapy for ITP patients (9). One limitation of this approach 
was, as indicated above that it only was efficacious in Rh(D)-
positive patients. However, a larger limitation was the fact 
that in some patients treated with anti-D that were Rh(D)-
positive, the anti-D resulted in significant morbidity due to 
associated problems resulting from the hemolysis, forcing the 
food and drug administration to issue a “black box warning” 
for using anti-D to treat ITP, especially in pediatric patients 
(236-239). Anti-D is, nevertheless, still used in the treatment 
of both pediatric and adult ITP (9,206-212). However, the 
AEs associated with IVIg, anti-D and glucocorticoids have 
prompted investigators to explore replacement of IVIg and 
other alternatives for the treatment of ITP.

Combination therapy
In cases where first-line therapy with IVIg is unsuccessful, 
a combination of IVIg with glucocorticoids is often  
used (157). In one study, it was found that use of IVIg plus 
glucocorticoids was more efficacious than glucocorticoids 
alone having significantly higher response rates (240). In 
another case, use of IVIg plus dexamethasone was found 
to be effective at resulting in a favorable outcome in a 
patient having coronavirus disease 2019 (COVID-19) and 
severe ITP (241). When patients are refractory to first-line 
therapeutics or combinations, splenectomy is still practiced 
as a “last resort” in some adult patients, especially if also 
refractory to second-line therapeutics.

Summary 

IVIg is a biologic manufactured from tens of thousands 
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of human plasma donations and had become a first-line 
treatment modality for amelioration of ITP. It has been used 
for more than 40 years in both pediatrics and adult patients. 
In adult ITP, IVIg 10% had often been the treatment of 
choice over glucocorticoids due to the lessor AEs associated 
with IVIg therapy. Although anti-D (RhIg) therapy 
continues to be used, the much harder to produce product 
from a small population of Rh-negative donors as well as 
the significant AEs associated with its use have enhanced 
the use of glucocorticoids and IVIg in the treatment of ITP 
over the years. 

Recently, treatment guidelines for adults with ITP 
have evolved to favor glucocorticoids over IVIg for first-
line therapy. This is primarily due to the less cost of 
glucocorticoids compared to IVIg and the fact that, in adults 
with ITP, glucocorticoids are very effective first-line therapy 
(208,209). However, IVIg and RhIg continue to be used 
by some institutions as first-line treatment and, especially, 
where patients may be bleeding (10,208,209). Although some 
recommendations continue to include IVIg and RhIg in their 
approach to adult ITP (208,209), more consensus is emerging 
that IVIg is best saved for adults who have active bleeding or 
at high risk for bleeding, who require a surgical procedure, 
or those adults who are unresponsive to glucocorticoids (10). 
In recent recommendations from the American Society for 
Hematology, IVIg is not included in first-line therapy (9,25). 
Thus, in many situations due to recent recommendations, 
IVIg has been relegated to second-line therapy for adult ITP 
(see Table 1 for a comparison of therapy for pediatrics versus 
adult ITP patients).
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