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Introduction

When tumor cells enter a growth stagnation period (G0/
G1) due to cell growth pressure or lack of necessary growth 
factors in the new environment, this state of quiescence is 
called tumor dormancy (1-3). Tumor dormancy is an unstable 
state, which can re-enter the proliferative state under the 
appropriate environment (4). If tumor cells are in a dormant 
state, the patients can maintain the survival state with tumor 
and the tumor is stable. If tumor cells are transformed from 

dormancy to activated proliferation, the metastasis is formed 
and the tumor progresses. In order to control malignant 
tumors, there are two main ways to control dormant tumor 
cells: the first is to make it dormant for a long time, and the 
second is to completely eradicate dormant tumor cells, to put 
an end to the source of tumor recurrence. 

More and more scientists are engaged in the research 
of tumor dormancy, and have proposed a lot of possible 
mechanisms for maintaining tumor dormancy (5-11). 
However, tumor dormancy is still an unstable state, which 
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is difficult to maintain for a long time (4,12). Because of 
the low proliferation characteristics of dormant tumor 
cells, it is insensitive to conventional radiotherapy and  
chemotherapy (13). Thus, it is difficult to completely 
eradicate dormant tumor cells. We need to find novel 
mechanisms to maintain tumor dormancy or novel targets 
to eradicate dormant tumor cells. A growing focus has been 
paid to autophagy, angiogenesis and tumor immune editing 
as mechanisms that dictate tumor cell dormancy (14-16). 
This review emphasizes on the regulation of autophagy, 
angiogenesis and tumor immune editing on tumor 
dormancy, and derives its clinical significance through these 
mechanisms (17,18). The study of the above mechanisms 
can effectively minimize the risk of cancer recurrence (19) 
(Figure 1). We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
http://dx.doi.org/10.21037/aob-20-46).

Autophagy promotes the survival of tumor 
dormant cells

Autophagy is an adaptive response of cells to adverse 
environment and lack of nutrition. In this process, cells 
eat their own organelles, so as to ensure proper energy 
balance and to recycle dysfunctional organelles and  
macromolecules (31). During the process of malignant 
transformation, autophagy has determinant effects enabling 
cell survival. Autophagy can also be activated in tumor cells 
and causes tumor cells to resist anoikis, which leads to the 
survival of tumor cells. Severe nutritional deficiency can 
strongly induce intracellular autophagy make cells reach a 
new energy balance, and thus enter a reversible dormancy 

state. When the tissue microenvironment changes, such as 
tumor cells regain sufficient nutrition or 6-biphosphatase-3 
increases expression, cells will be activated and proliferated 
again. Autophagy can, in addition to starvation, be 
activated by myriad physiological stress stimuli, which 
includes hypoxia, high temperature, hormonal stimulation, 
endoplasmic reticulum stress or pharmacological agents, 
to name just a few. This good pressure tolerance given to 
tumor cells by autophagy is beneficial for resting cells to 
wait for the opportunity to form metastatic foci in distant 
organs. Autophagy has been proposed to play a key role in 
tumor cell dormancy, although few studies have addressed 
this hypothesis experimentally (32-39).

It is demonstrated in mouse and human 3D in vitro 
and in vivo preclinical models of dormancy that dramatic 
metastatic burden and decreasing cell survival can be owing 
to pharmacologic or genetic inhibition of autophagy in 
dormant cells. Damaged mitochondria and reactive oxygen 
species (ROS) accumulated within the cells can impairs 
the survival of dormant cancer cells significantly, while the 
accumulation is usually produced by the pharmacological 
autophagy inhibition, in which different autophagy 
inhibitors, such as 3-methyladenine, bafilomycin and hydroxy 
CQ are administrated. Autophagy related gene 7 (ATG7) is 
necessary for autophagy activation. Knockout of autophagy 
related gene 7 (ATG7) can prevent P-body clearance and 
MET (mesenchymal-epithelial transition), inhibit the 
growth of metastatic tumor. Therefore, autophagy may 
trigger the signal pathway in dormant cells by changing the 
microenvironment, which promotes the survival of dormant 
cancer cells and the recurrence of metastatic tumors (39,40). 
Besides ROS and ATG7, there might be other vulnerability 
autophagy checkpoints to consider, particularly in the context 
of chemoresistance in colorectal cancer, liver cancer, brain 
tumors, and melanoma (41-44).

Ras homologue member I (ARHI) is an inhibitor of 
the PI3K-AKT-mTOR cascade. ARHI encoded protein is 
expressed in human breast, ovary and other tissues, while 
down-regulated or deleted in breast cancer, ovarian cancer 
and other tumor tissues, suggesting that it is related to the 
occurrence and development of these tumors. It has been 
reported that the re-expression of ARHI leads to autophagy 
death. This may be related to the increase of oxidative 
stress, the decrease of ATP/ADP and the decrease of 
mitochondrial function caused by the expression of ARHI. 
When the cell grows as a xenograft in mice, it keeps the 
cell dormant. When the level of ARHI in dormant cells 
decrease, the xenograft grows rapidly. However, regrowth 
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Figure 1 Potential “hallmarks” of tumor dormancy. Tumor 
dormancy is affected by autophagy, angiogenesis, immunity and 
many other factors (extracellular matrix , hypoxia , metastatic niche 
etc.) These factors can work alone, but they often overlap, making 
tumor dormancy more complicated (20-30).
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of xenografted tumors can be reduced significantly upon 
reduction of ARHI levels, by means of chloroquine that 
inhibited ARHI-induced autophagy, through which a 
conclusion could be reached that autophagy contributed to 
the survival of dormant cells. Through further analysis, it 
was suggested that by treating growth factors [insulin-like 
growth factor-1 (IGF-1), macrophage colony-stimulating 
factor (M-CSF)], angiogenic factors [vascular endothelial 
growth factor (VEGF), interleukin-8 (IL-8)], and matrix 
proteins found in xenografts to cultured human ovarian 
cancer cells in which ARHI had been re-expressed, 
autophagic cell death was reduced. Therefore, ARHI can 
induce autophagic cell death, but can also promote tumor 
dormancy in the presence of factors that promote survival in 
the cancer microenvironment. This characteristic of ARHI 
gene is expected to be the key point of inducing tumor cell 
dormancy and anti-tumor metastasis and recurrence (45-50).

However, it has been reported that autophagy defects 
are associated with tumorigenesis. Because in human breast 
cancer, ovarian cancer and prostate cancer, autophagy 
regulatory factor BECLIN 1 is a single allele deletion, 
while BECLIN 1 (+/−) mice are prone to tumor. Autophagy 
stimulation maintains cellular adaptability by maintaining 
protein and organelle quality control. Inhibition of 
DNA damage and genomic instability, as well as limiting 
necrosis-related inflammation may play a key role in cancer 
prevention (51-54).

Individualized anti-tumor therapy by inhibiting 
autophagy of tumor cells is a hot topic in current research. 
The mammalian target of rapamycin (mTOR) is now 
perceived as sensor that functions as something like a 
coordinator manipulating the balance between growth and 
autophagy to contend with physiological conditions and 
environmental stress at cellular level. mTOR is a serine/
threonine protein kinase that could be subsumed under 
the phosphatidylinositol kinase-related kinase (PIKK) 
family (55). Against which the mTOR inhibitor everolimus 
displays potent antitumor activity in patients with metastatic 
disease by impeding autophagy and tumor dormancy 
onset (18,56,57). PI3K/AKT/mTOR pathway is altered in 
germline and somatic tissues downstream PTEN and this 
could be exploited as actionable mutations or to stratify 
patients treated with approved inhibitors (e.g., sirolimus, 
PI3K inhibitors, etc.) (58). Copper deprivation reduces ATP 
level and increases mitochondrial ROS level, which caused 
an increase in cell autophagy and rendered cancer cells 
in a dormant state. Copper chelator tetra thiomolybdate 
and autophagy inhibitor CQ can prevent tumor cells from 

entering dormant state and kill tumor cells effectively (59).
Interestingly, some studies also suggest that cancer 

may be controlled by inducing autophagy. Such as protein 
restriction mimetic resveratrol induces autophagy by 
limiting calories, which makes tumor cells dormant for 
a long time period (60). Thus, in this period the patients 
can maintain the survival state with tumor and the tumor 
is stable. Tumor dormancy is temporary and difficult to 
maintain for a long time. Therefore, through inducing 
autophagy is less effective than inhibiting autophagy in 
controlling the tumor, since the former tries to cause the 
tumor cell to dormant for a long time while the latter causes 
the tumor cell death.

Inhibition of angiogenesis can lead to tumor 
dormancy

Angiogenesis is a sign of tumor growth and progression, 
and tumor growth is vessel-dependent (13). Angiogenesis 
is a complex multi-step physiological process that occurs 
throughout life both in normal tissues and in disease. It is 
tightly regulated by the balance between pro-angiogenic 
and anti-angiogenic factors (Table 1). The angiogenic 
switch has been identified as the key step during tumor 
progression. The angiogenic switch mainly depends on the 
disruption of pro-angiogenic factors and anti-angiogenic 
factors equilibrium. The expression of pro-angiogenic 
genes increases due to physiological stimuli, such as hypoxia 
or oncogene activation and tumor suppressor mutations 
as the mass grows. In favor of pro-angiogenic factors and 
on the recruitment of circulating endothelial progenitors 
(CEPs) can activate the angiogenic switch and promote the 
formation of new blood vessels. The notion that angiogenic 
endothelial cells could communicate signals to tumor cells 
raises questions about the possibility of achieving tumor 
dormancy by counteracting angiogenesis (61-66). On the 
other hand, blood vessels can deliver nutrients and oxygen to 
the tumor microenvironment (67). The implementation of 
anti-angiogenesis can change the tumor microenvironment, 
so as to prevent the growth and metastasis of tumor, and 
induce a dormant state in the tumor cells (68). It is worth 
mentioning that the isolation of angiogenic factors lead 
to the hypothesis of inhibiting angiogenesis to block 
vessel formation and result in tumor dormancy (69,70). 
Involvement of angiogenesis in dormancy is key for the 
regulation of tumor growth in mice (71-73).

Further studies have shown that dormant tumor cells can 
secrete higher levels of thrombospondin, which has a strong 
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inhibition effect on angiogenesis. Complex interactions 
between tumor cells and endothelial cells can control 
tumor awakening from dormancy. Angiogenesis plays an 
important role in tumor dormancy (74). Vascular dormancy 
is considered to be a kind of tumor dormancy. Vascular 
dormancy can inhibit the proliferation and angiogenesis of 
endothelial cells, regulate the balance between angiogenic 
factors and anti-angiogenic factors, make tumor cells 
withdraw from the growth cycle, maintain the resting state, 
and significantly inhibit tumor recurrence and metastasis.

It has been found that angiogenic related genes are the 
most functional genes in tumor cell dormancy. Platelet 
reactive protein, an endogenous angiogenic inhibitor, as 
well as angiostatin and endothelial inhibin binding protein, 
were found to be up-regulated in all detected dormant 
tumor cell lines. The increased expression of platelet 
reactive protein in non-angiogenic cells is mediated by 
the activation of PI3K/c-Myc pathway. To sum up, PI3K-
mediated thrombospondin can inhibit tumor angiogenesis 
and inhibit tumor proliferation and metastasis (75). It has 
also been found that microRNAs, mediated by nano-carriers 
involved in osteosarcoma tumor-host interaction can inhibit 
osteosarcoma angiogenesis and induce tumor dormancy. 
These microRNAs include: miR-34a, miR-93 and  
miR-200c, which prevent tumor progression by reducing 

the mRNA levels of genes critical to tumor angiogenesis 
and cancer progression in general (76). Additionally, vitamin 
E succinate inhibits melanoma angiogenesis and promotes 
melanoma dormancy (77).

In addition to the above-mentioned factors that 
inhibit angiogenesis, there are also a large number of 
factors that promote angiogenesis in the human body. 
Neutrophil-derived MMP-9 was required for 14,15-EET 
to induce angiogenesis during the growth of dormant 
micrometastases. 14,15-EET could induce neutrophilic 
infiltration in metastatic lesions and the conversion 
of neutrophil function, thus triggering the growth of 
minimal dormant metastases. 14,15-EET promotes the 
growth of dormant micrometastases in a dose-dependent  
manner (78). Tissue factor (TF) is a risk factor for 
metastasis, and in mouse models, TF drives metastasis in 
a coagulation-dependent manner (79). In hypercoagulable 
state, TF increased, and tumor dormancy was affected 
by TFs. It has been found that the microenvironment 
orchestrated by TF expression drives permanent changes in 
the phenotype, gene-expression profile, DNA copy number, 
and DNA methylation state of the tumor cells that escape 
from dormancy. TF can promote tumor angiogenesis and 
transform tumor dormant cells into active proliferation, 
which leads to the recurrence of malignant tumor (80). 
Immature dendritic cells also can exert proangiogenic 
effects when infiltrating the tumor microenvironment (81).

Based on the above mechanisms, a large number of anti-
tumor angiogenic drugs are introduced into clinic, such 
as: recombinant human endostatin injection, bevacizumab, 
apatinib, etc. Anti-tumor targeted therapy with anti-
angiogenic drugs and their targets that block nutrient 
availability is a pillar of cancer treatment. This constitutes 
an opportunity to provide some evidence and/or propose 
new hypothesis about the mechanisms of resistance and 
efficacy in the context of target tissue, vessel and immune 
system, which is the following topic. For example, anti-
VEGF monoclonal antibody reduced vascular density and 
tumor growth in mice bearing xenografts of glioblastoma 
multiforme, leiomyosarcoma and rhabdomyosarcoma (82). 
Another example is  the efficiency of metronomic 
chemotherapy in lung cancer, leading to anti-tumor and 
anti-angiogenic effects without causing toxicity (83). 
However, the effect of their clinical application is not as 
satisfactory as that shown in animal experiments, which 
indicates that tumor angiogenesis is a complex process 
regulated by many factors and multiple signal pathways. 
Blocking a certain signal pathway alone cannot completely 

Table 1 Common pro-angiogenic factors, anti -angiogenic factors 
and main signal pathways related to angiogenesis

Pro-angiogenic factors

Vascular endothelial growth factor (VEGF)

Transforming growth factor (TGF)

Fibroblast growth factor (FGF)

Platelet-derived growth factor (PDGF)

Epidermal growth factor (EGF)

Anti-angiogenic factors

Thrombospondin-1 (TSP-1) 

Endostatin

Angiostatin

Signal pathways related to angiogenesis

PKC-MAP kinase pathway

PI3 kinase pathway

Lipid medium-EDGs signal transduction pathway

EDGs, endothelial differentiation gene.
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prevent the formation of tumor blood vessels. We need 
to further study the effect of anti-tumor angiogenic drugs 
promoting tumor dormancy.

Tumor dormancy is a clinical phenomenon 
related to immune equilibrium in the process of 
tumor immune editing

Tumor immune editing is  a  process in which the 
immune system controls tumor growth and forms tumor 
immunogenicity, including three stages: elimination, 
equilibrium and escape (84). Tumor dormancy is a clinical 
phenomenon related to immune equilibrium in the process 
of tumor immune editing (85) (Figure 2). When certain 
changes occur in some tumor cells, resulting in the inability 
of the immune system to fully recognize and remove them, 
they survive in the body. Because the immune system still 
has a certain monitoring function, these tumor cells do not 
proliferate rapidly into clinically visible lesions, resulting in 
tumor dormancy. Dormant cells have genetic instability, and 
a variety of mutations occur. After a period of accumulation, 
the cells are finally transformed into another phenotype, 
thus avoiding the attack of the immune system and rapid 
proliferation, leading to immune escape. Maintaining the 
tumor immunity in the equilibrium period will lead to 

tumor dormancy, tumor growth inhibition, and will not 
cause harm to the body for the time being (89).

The immune system does a good job in promoting their 
permanent dormancy, through restraining disseminated 
cancer cells. After antitumor therapy, some tumor cells 
become senescent, a process known as therapy-induced 
senescence (TIS). The senescence-associated secretory 
phenotype (SASP) is a hallmark of TIS. Some senescent 
tumor cells can be regarded as dormant tumor cells, which 
can be restored to proliferate when the immune system is 
weakened (90-96). With excellent ability of recognizing 
intracellular antigens which are expressed by all tumor cell 
types, T lymphocytes functions significantly in maintaining 
immune equilibrium with metastatic dormant cells. The 
decreased duration of dormancy and shortened mean time 
for B cell lymphoma recurrence on the spleen has close 
relationship with the depletion of the CD8+ T cells, which 
could be found in a mouse model of tumor dormancy. This 
also suggests that via production of interferon (IFN)-γ, 
CD8+ T cells can facilitate the induction and maintenance 
of the state of dormancy. Avoidance of micro angiogenesis 
and promotion of hypoxic-induced dormancy could be 
realized by CXCL9 and CXCL10 produced by CD4+ T 
cells. A cytotoxic T lymphocyte (CTL) response could be 
elicited by the natural killer (NK) cells due to its activator 
function. The fact that a long period of dormancy in vitro 
and in vivo is included in perforin which was secreted by 
NK, has been observed. CTLs and NK cells can work 
cooperatively to eradicate cancer cells with or without class 
I major histocompatibility complex (MHC-I), and thus 
minimize the chance of immune evasion and metastasis. 
As a complementary to CTLs, NK cells kill tumor cells 
without self-markers by releasing perforin and granzyme 
B into the targeted cells. Immunotherapeutic interventions 
in metastatic dormancy may help to control or eradicate 
cancer disease (94,97-102).

A variety of situations can lead to immune escape. 
The immune system destroys tumor cells by recognizing 
antigenic determinants. When the antigenic determinants of 
a small number of tumor cells change, their immunogenicity 
changes, MHC-I lose expression. T lymphocytes cannot 
recognize tumor cells, and immune escape occurs. Through 
suppressing activation, proliferation and cytokine expression 
effects on T cells and inhibiting the phagocytosis of 
tumor-associated macrophages (TAMs), the PD-1/PD-L1 
signaling pathway can limit the functions of T effector cells, 
NK cells, dendritic cells, TAMs, etc. So as to promote the 
possibility of tumor immune escape (103). Localized lactic 
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Figure 2 Immune equilibrium. When the immune system 
and developing tumor enter into a dynamic state of balance 
that controls tumor outgrowth, this period is called immune 
equilibrium. Immune equilibrium can be maintained for a long 
time, in which the tumor is dormant, but when the factors 
promoting immune escape are gradually increased, the balance is 
broken and the tumor cells enter the proliferative phase (84,86-
88). Most of the current immunotherapies are designed to reduce 
immune escape by enhancing the body’s immunity.
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acidosis has a strong immunosuppressive effect and mediates 
an immune escape of tumors (104). Macrophage migration 
inhibitory factor (MIF) is a pleiotropic cytokine that plays 
a key role in cancer. MIF is upregulated in neuroblastoma 
tissues and cell lines and it contributes to neuroblastoma 
aggressiveness and immune-escape (105). Inflammatory 
mediators and inflammatory cells in the inflammatory 
microenvironment promote the transformation of normal 
cells to cancer cells in the early stage of cancer, promote the 
growth and development of cancer cells, and induce tumor 
immune escape (106). Vascular endothelial growth factor 
C (VEGFC), an activator of lymph angiogenesis, is newly 
identified as an immunomodulator which can regulate 
the immune system so that tumor cells more easily escape 
immune surveillance (107). Many tumorigenic viruses 
can also cause immune escape. Epstein-Barr virus (EBV) 
miRNAs can inhibit the expression and presentation of viral 
antigens, inhibit immune activation and immunotoxicity, 
assisting host cells to escape from immunity, and providing 
conditions for further immortalized tumorigenesis of the 
host cells (108). In organ transplant cases, because the 
donor has occult cancer, the recipient can develop cancer 
in the transplanted organ over a period of months to years 
after systemic immunosuppression. The only survivor was 
a recipient with discontinued immunosuppression. These 
findings suggest that cells prone to tumor development 
might be in a dormant state, and dormant cells are activated 
when the receptor’s immunity decreases and triggers 
immune escape (109-111). In patients with immune escape, 
the incidence and recurrence rate of cancer are higher. 
Therefore, we need to avoid immune escape as far as 
possible to prevent dormant tumor cells from re-entering 
the state of proliferation.

All other currently available cancer therapies are 
toxic with off-target effects, whereas immune cells could 
establish memory against dormant tumor antigens such as 
mutated tumor antigens, and keep them dormant for the 
lifetime of an individual (112). Therefore, the immune 
mechanisms controlling cancer progression have been 
the focus of intensive research. Through the study of 
immune mechanism, a large number of immune checkpoint 
inhibitors poured into the clinic. Antibodies that block 
the interaction between PD-1 and ligand PD-L1 have 
achieved remarkable clinical success in cancer therapy, and 
immunotherapy has become a hot spot in cancer therapy. 
However, a large gap exists between clinical efficacy and 
theory, and only a small proportion of patients show a 
lasting response to immunotherapy. Moreover, the degree 

of efficacy of checkpoint inhibitors is also varies widely 
among different tumor types. The extreme complexity, 
robustness, and plasticity of the immune system might 
raise many challenges, but it also leaves us with reasons for 
optimism as we anticipate the impact of breakthroughs in 
our fundamental understanding of immunology (113-116).

Conclusions

The important limitations of tumor dormancy research are 
the lack of appropriate experimental models and consistent 
and rich sources of dormant tumor cells. Dormancy is a 
hidden state, so it is difficult to observe and study directly. 
Although a variety of mechanisms have been proposed that 
may affect tumor dormancy, it is actually only a tip of the 
iceberg so far (75,117). The mechanism of tumor dormancy 
is so complex and diverse, and the field of tumor dormancy 
is just like a vast universe, which requires people to continue 
to explore.

By studying the effects of autophagy, angiogenesis and 
immunity on tumor dormancy, a large number of new 
drugs and treatments have been adopted into the clinic. 
At present, most drugs and treatments take effects mainly 
through two aspects: maintaining tumor dormancy or 
preventing tumor cells from entering dormancy during 
chemoradiation. However, simply interfering with one of 
the factors cannot achieve satisfactory results, since tumor 
dormancy is affected by a number of factors. At present, 
with the lack of biomarkers for tumor dormant cells, it is 
impossible to formulate a reasonable personalized treatment 
plan by monitoring tumor dormant cells effectively. Besides, 
the lack of therapeutic targets for tumor dormant cells also 
makes it difficult to completely eradicate tumor dormant 
cells. Should the two mentioned difficulties overcome in the 
future, we can better prolong the disease-free survival (DFS) 
of patients and improve the prognosis of patients.
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